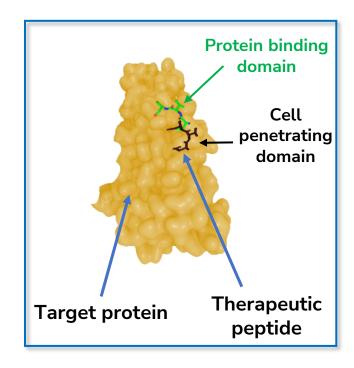


Corporate Overview of Primary Peptides Inc.

- Neuroscience focused company, spun out of the Centre for Brain Health and the Faculty of Medicine, University of British Columbia, (UBC), Canada
- Unique protein manipulation platform technology to unlock undruggable targets
- Pipeline consists of first-in-class peptide therapeutics, focused on hard-to-drug targets in neuro indications with significant unmet medical need:
 - K13 Phase 2 ready, neuroprotective agent for acute stroke partnered with Yabao Pharma for China rights only
 - K13V Stroke-triggered gene vector for expressing K13 peptide (preclinical)
 - PP-003 Alpha synuclein for Parkinson's Disease (preclinical)
 - PP-007 TDP-43 for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia (preclinical)
- Strong patent portfolio and clean cap table
- Highly-experienced management team, Board of Directors and Scientific Advisory Board
- Seeking Series A to advance pipeline and platform

The Problem and Our Solution

The Problem


 Over 85% of the Human Proteome is undruggable using small molecules and antibodies

Our Solution

 Differentiated protein manipulation platform using peptides to unlock "undruggable targets" via protein-protein interference and protein degradation

First in class peptides:

- ✓ Highly selective
- ✓ Target pocket-free zones on specific proteins
- ✓ Non toxic and nonimmunogenic
- ✓ Cell permeable and cross the blood brain barrier (BBB)

• Peptides now widely accepted as a therapeutic modality. Notable examples include multi-billion dollar obesity drugs Semaglutide by Novo Nordisk and Tirzepatide by Eli Lilly, administered by once-weekly subcutaneous injections

Robust Pipeline First-in-Class Peptide Therapeutics in Neurological Disorders

	Assets	Indication	Target	Discovery/ in vitro studies	Animal studies	IND enabling studies	IND	Phase 1	Phase 2
1.	K13	Acute Stroke (both ischemic and hemorrhagic)	PTEN & NEDD4	Interference Pe	ptide				yabao ♥ Greater China rights only
2.	K13V	Automatic Stroke Damage Mitigation (Vascular Dementia)	PTEN & NEDD4	Stroke- triggered gene vector	>				
3.	PP-003	Parkinson's Disease	α-synuclein	Bi-functional D	egrader	>			
4.	PP-007	ALS/FTD	TDP-43 & CK1δ	Interference Pe	ptide	>			

Notes:

- K13 Phase 1 study conducted in China (meets standards of Chinese NMPA and US FDA)
- Interference peptides: block protein-protein interactions
- Bi-functional Degraders: block protein signalling pathway & degrade disease causing proteins
- Stroke-triggered gene vector: releases K13 peptide when a stroke occurs
- Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD)

Large Market Opportunities in Neuroscience

- > 15M Patients WW
- > \$10B market opportunity
- > 10M patients WW
- > \$5B market opportunity
- > 500K patients WW
- > \$1B-5B per indication

Major Neurological Disease

Acute Stroke

FDA fast track possible

Major Neurodegenerative Disease

> Parkinson's Disease

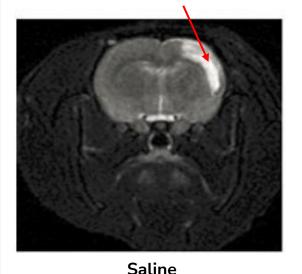
Rare **Neurodegenerative** diseases

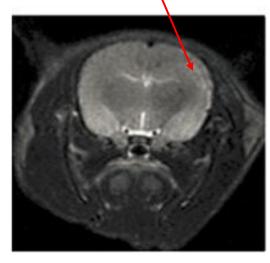
ALS, FTD

Orphan Indications

Peptides Cross Blood Brain Barrier and Cell Membrane

Biomarker Driven Development


Strategic Partnering Opportunities


Clinical K13: neuroprotective peptide inhibitor for both Hemorrhagic & Ischemic Stroke Current standard of care tPA for Acute Ischemic Stroke only

MRI scan of Brain Damage in vivo in Stroke Model

Ischemic Infarct Area

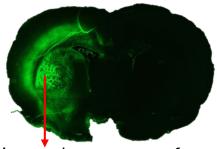
Infarct Area Reduced

K13 injection 6hrs after Stroke

- K13 provides long-lasting morphological & functional protection of neurons against ischemic insults
- Promotes behavioral recovery

K13, Positive Ph 1, good safety and PK data

- Possible delivery up to 6 hrs. after stroke onset, potentially in ambulance setting
 - twice as long as tPA
- No risk of provoking hemorrhages
- Differentiated clinical plan for Phase 2 in surgery induced stroke setting using Aneurysm Coiling Therapy



K13: Proposed Phase 2 Trial Plan

- Adopt a well validated Ph 2 protocol as employed by NoNo Inc., Canada ClinicalTrials.gov Identifier: NCT00728182, <u>Phase 2 clinical trial</u>, and presented in <u>Hill et al., Lancet Neurol, 2012</u>
- The trial evaluated the neuroprotection of therapeutic NA-1 in a surgery induced stroke setting using Aneurysm Coiling Therapy
- Consulted with Principal Investigator of both Phase 2 and 3 trials. Proposed plan:
 - Dose male and female patients undergoing endovascular repair of brain aneurysm with K13 or placebo as a 10 minute intravenous infusion after completion of the endovascular procedure
 - Proposed efficacy endpoints:
 - Reduction in volume of ischemic embolic strokes
 - Reduction in the number of ischemic embolic strokes
 - Reduction of vascular cognitive impairment, and
 - Reduction of the frequency of large strokes induced by the endovascular procedure.

K13V: Stroke-triggered Gene Vector for K13 Peptide

Specific expression (bright green fluorescence) of a stroke-triggered gene vector in the rat brain

Stroke-triggered gene vector for expressing a therapeutic peptide

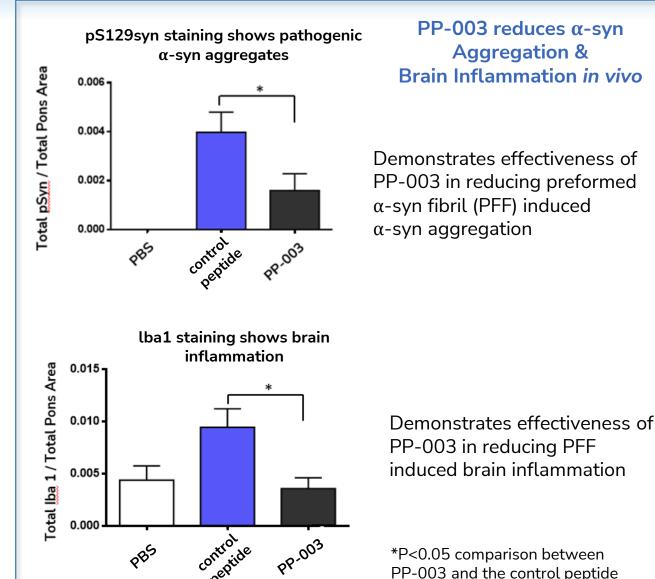
The rat brain that was pre-treated with a stroketriggered gene vector 3 months earlier showed much smaller brain damage after stroke

With a stroketriggered gene vector

Almost no ischemic infarct area

Without a stroketriggered gene vector

Big ischemic infarct area

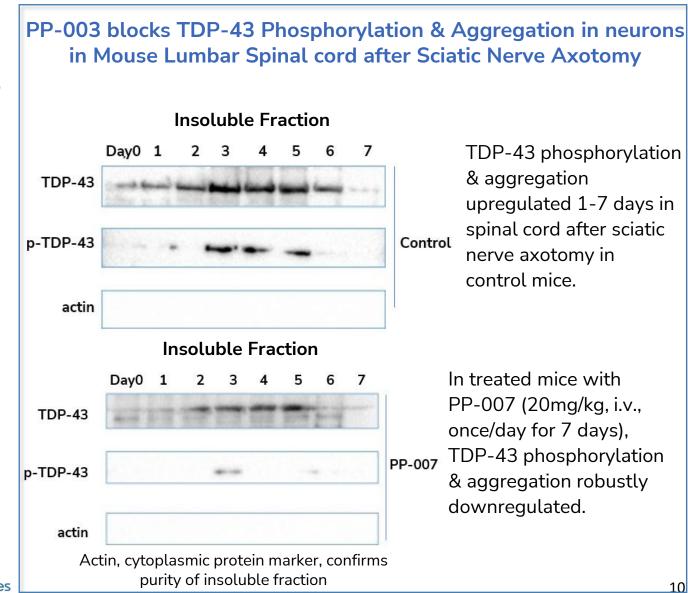

Key Unmet Need in Stroke Damage Mitigation

- There is currently no treatment that can automatically protect the brain from the effects of a stroke
- We have developed a stroke-triggered gene vector method to express therapeutic peptides as a potential approach for automatic stroke damage mitigation
- K13V is a stroke-triggered gene vector. It expresses K13
 peptide, saves neurons from death, and can be given to
 individuals with a high risk of stroke and to those with
 vascular dementia which is caused by an ongoing series of
 small strokes
- If K13 has a successful phase 2 trial, we will quickly follow up with the K13V program

Preclinical PP-003 : targets α -synuclein degradation, a key hallmark of Parkinson's Disease No approved therapies target α -synuclein

PP-003, First in Class Degradation Peptide for PD

- Evidence supports premise that reducing α syn levels may be an effective therapy for PD
- Demonstrates efficacy in 4 well characterized PD models
 - ✓ reduces α -synuclein levels
 - ✓ saves neurons, and
 - ✓ rescues behavioral function
- Does not require E3 ligase for degradation
- Peptide crosses the BBB and cell membrane
- Several candidates targeting α -synuclein have failed in clinical studies- unable to cross BBB, or cell membrane



PrimaryPeptides 9

Preclinical PP-007: targets TDP-43 proteinopathies present in 97% of ALS patients ALS poorly controlled by current therapies with different mechanism of action

PP-007, First in Class Interference Peptide for ALS

- Precisely blocks CK-1 δ phosphorylation of TDP-43
- Offers high specificity compared to kinase inhibitor approaches that often result in off-target effects
- Validated in in vitro and in vivo models:
 - ✓ blocks TDP-43 phosphorylation & aggregation in neurons
 - reduces cell death in human neuroblast cells and motor neurons
 - reduces spinal cord inflammation even when given after disease onset
 - prevents stress granules formation
- Orphan drug potential

The Raise

- 1) Seeking a \$25M USD Series A financing
- 2) Pre-money valuation of \$50M USD
- 3) One class of common shares
- 4) Rolling close accept funds as they are committed

Milestones over the next 3 years with \$25M+ raise

Use of Proceeds	Budget (USD)
US IND filed for K13 for Acute Stroke – ready to enter Phase 2 studies	\$1M
Phase 2 studies underway for K13	\$15M
Continue the development of K13V to IND ready stage	\$2M
IND filed for Parkinson's Disease or ALS/Frontotemporal Dementia (FTD). Phase 1 trial underway	\$5M
Ongoing operations	\$2M

Exit Strategy and Rate of Return

- 1) Three years from the Series A close, one asset in Phase 2 and the second in Phase 1
- 2) The stroke triggered gene vector, K13V, will be in IND-enabling studies
- 3) Strategic partnerships with large pharma(s) pursued
- 4) Achievements will support an IPO, or a big buyout in mid 2028
- 5) Expected pre-money valuation of \$300M USD at IPO, yields a 300% return over 3 years

Primary Peptides - An Accomplished Team

Leadership Team

Max S. Cynader, CM, OBC, PhD, FRSC, FCAHS. CEO & Co-Founder Prof. Medicine, UBC, Canada Research Chair Brain Development & Serial Entrepreneur

Yu Tian Wang, MD, PhD, FRSC CSO & Co-Founder Prof. Medicine & Centre for Brain Health, UBC. Chair in Stroke Research & Entrepreneur

David Turner, Chartered Accountant Chief Financial Officer 30 yrs.+ global experience in Executive Leadership – Life Sciences and Clean Tech

Jack Jin. PhD **Chief Operating Officer** PhD in Neuroscience, UBC. 10 yrs.+ scientific research & company operations

Julie Rezler, MA VP, Corporate Development 20 yrs.+ Life Sciences – US, Canada & Asia. Former global Management Consultant with PwC

Janice Mallison, MSc VP, Regulatory & Clinical Affairs 30 yrs.+ Biopharma in Canada, US & Europe

Advisory Board

Ron Petersen PhD. MD Prof. Neurology & Director of Alzheimer's Disease Research Mayo Clinic. Expert in Parkinson's Disease and lifetime Achievement Award for AD Research

Peng Wang, PhD Discovery and development of 30+new drug candidates including Reslizumab, Cinquil™ and Sanbexin™

Helen M. Burt, PhD, CAHS, OC Former Director, Research at Angiotech Pharma. Expert in drug delivery

William Wei-Guo Jia, MSc, PhD Company co-founder. Associate Professor, Department of Surgery, UBC. Founder & CSO Virogen Biotech

John Cairns, MD, FRCPC, FRCP (Lond.), FCAHS, FACC Prof. Medicine, UBC, Cardiology. Steering Committee Chair Cardiovascular clinical trials

PrimaryPeptides

Seeking Series A

Developing Breakthrough Neuro Therapeutics using Protein Manipulation

Please contact:

Dr. Max S. Cynader, CM, OBC, PhD, FRSC, FCAHS Co-Founder & CEO

O: (+1) 604-822-0395 M: (+1) 604-649-2274

max@primarypeptides.com www.primarypeptides.com